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Evolution of cooperative strategies from first

principles

Mikhail Burtsev' & Peter Turchin®

One of the greatest challenges in the modern biological and social
sciences is to understand the evolution of cooperative behaviour.
General outlines of the answer to this puzzle are currently
emerging as a result of developments in the theories of kin
selection'”, reciprocity®'’, multilevel selection''"* and cultural
group selection'*". The main conceptual tool used in probing the
logical coherence of proposed explanations has been game theory,
including both analytical models and agent-based simula-
tions®”*'*?*, The game-theoretic approach yields clear-cut results
but assumes, as a rule, a simple structure of payoffs and a small set
of possible strategies. Here we propose a more stringent test of the
theory by developing a computer model with a considerably
extended spectrum of possible strategies. In our model, agents
are endowed with a limited set of receptors, a set of elementary
actions and a neural net in between. Behavioural strategies are not
predetermined; instead, the process of evolution constructs and
reconstructs them from elementary actions. Two new strategies of
cooperative attack and defence emerge in simulations, as well as
the well-known dove, hawk and bourgeois strategies. Our results
indicate that cooperative strategies can evolve even under such
minimalist assumptions, provided that agents are capable of
perceiving heritable external markers of other agents.

The two-dimensional artificial world in our model is divided into
cells, which either contain a resource bundle or are empty. An empty
cell can acquire a resource bundle with a certain probability per time
step and lose it when resource is consumed by an agent. Agents are
characterized by a set of receptors, a set of effectors and a neural net
connecting receptors to effectors. Each effector is responsible for a
particular action. Agents can do nothing (rest), consume the resource
bundle if it is present (eat), produce offspring (divide), go forward to
a neighbour cell (move), make a turn to the left or right (turn), and
attack another agent if present in the same cell (attack). All actions
spend energy taken from the agent’s internal store. If internal energy
is completely depleted, the agent dies. The least energetically
demanding action is rest, the most demanding is attack. Consump-
tion of resource increases the internal store of energy subject to an
upper limit (the maximum energy that can be stored). When an
agent divides, one offspring is created and placed in the same cell as
the parent. The parent then transfers half of its energy to the
offspring. When one agent hits another, the victim loses an amount
of energy, which is gained by the attacker (see Methods for energetic
costs of actions).

Sensory inputs of agents include its internal store of energy,
whether there are resources in the agent’s field of vision (the cell it
is in, the neighbour cell in front of the agent, and the cells on the right
and left), and how many other agents are in the field of vision. Each
agent has external phenotype that is coded by a vector of integer
values (markers). The markers do not influence behaviour but
function only as indicators of similarity. The euclidian distance

between an agent’s markers and the markers of another agent in
the cell (a potential subject for attack) is also a sensory input.
Behaviour of an agent is controlled by a simple one-layer neural
net. Both weights of the neural net and external markers are inherited
by the offspring when an agent divides, subject to a set rate of
mutation. Details of the implementation of the model are given in the
Methods.

All of our simulations were started with an initial population
of agents that were unaware of markers (the matrix coefficients
connecting input from markers to actions were preset to zero). Thus,
the use of markers in a population had to evolve from a blank slate.
Because markers and behaviours are not linked (apart from both
being inherited from the ancestors), agents can lose cooperative
behaviours by mutation while retaining ‘in-group’ markers. Thus,
the structure of the model allows free-riders to arise.

The number of potential behavioural strategies in our model is
astronomical (>10"%; see Methods). Because of the vast number of
potential strategies, it is difficult to understand exactly what are the
behaviours that evolve in the simulation—each matrix of neural
weights is a ‘black box’. To make sense of our results, we confronted
agents that evolved in our simulations with a discrete set of stimuli
and noted the action taken. This approach enabled us to classify
strategies into aggressive or not, and those discriminating in-group
versus out-group members (see Methods).

Our study examined the spectrum of strategies evolving in the full
model versus the simplified version in which agents could not detect
external markers. We also determined how the carrying capacity of
the environment (varied by increasing the size of resource bundles
while keeping the rate of bundle appearance constant) affects the
strategies evolved.

Analysis of the model without markers showed that the strategies
evolving in the simulation corresponded to those in the well-known
game of dove-hawk—bourgeois”. Doves never attack other agents
and attempt to escape when attacked, whereas hawks make a living by
predation on other agents. The bourgeois strategy in our model is to
stay in the same cell and immediately attack any invader, while
ignoring agents in neighbouring cells (unlike the hawks). In the
model without markers the dominant strategy is bourgeois, provided
that the carrying capacity of a single cell is sufficient for supporting a
sedentary agent (amount of resource in a bundle is sufficient for
survival until the next bundle appears). Below this threshold, C;, the
bourgeois strategy is impossible, because agents are forced to keep
moving to get enough food to survive, and the population is divided
between doves and hawks. The long-term population density
increases linearly with carrying capacity until it reaches C, and
then becomes flat (Fig. 1). This is because once the bourgeois strategy
takes over, each cell can be occupied by only a single agent. Even when
resources are sufficient to support more than one agent per cell, they
fight until only one remains.
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Figure 1| The effect of resource abundance on population density.
Population density (average number of agents per cell) as a function of the
abundance of resources (the size of resource bundle randomly appearing in a
cell with a fixed probability). Broken curve, model version without external
markers; solid curve, model with markers.

In the full model, in which agents can evolve the ability to detect
phenotypic similarity, three kinds of cooperative strategies emerged.
The first one was simply the cooperative version of the dove.
Cooperative doves ignored out-group (phenotypic distance large)
members, but left cells with in-group (phenotypic distance is small)
members to avoid competing with them. In the second strategy,
agents also left cells with in-group members, but when they detected
out-group members they attacked them. We term this strategy
‘raven), because, according to the Russian proverb, ‘a raven will not
peck out the eye of another raven’. The third cooperative strategy was
to stay in the same cell with in-group members and collectively fight
with any out-group invader. Having to share limited resources of the
cell meant that agents using this cooperative defence strategy were
small (had small stores of internal resource), but they still had a good
chance of defeating a large invader because of their advantage in
numbers. This strategy resembles the ‘mobbing’ behaviour that many
species of small birds, such as starlings, use to drive away large
predators. For this reason, we call it the ‘starling’ strategy.

The emergence of the starling strategy has a marked effect on the
relationship between carrying capacity and long-term population
density. For lower values of carrying capacity, the curve in the full
model follows that of the model without markers. But once it exceeds
the threshold C, = 2C), the density curve again begins to rise
(Fig. 1). Analysis of the effect of carrying capacity on the prevalent
strategies, evolved by agents, indicates the mechanism of this rise. If
carrying capacity is insufficient to support at least two agents in a cell
(C < C,), the starling strategy cannot invade the population.
Instead, the dominant strategy is raven, whose frequency increases
linearly with C for C < C,, and saturates at a high level for
C, < C<C, (Fig. 2). So far, the only difference resulting from
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Figure 2 | The effect of resource abundance on the long-term proportions of
agents using various strategies. Average proportion of agents using the
raven (unbroken line), the cooperative dove (dashed line) and the starling
(dotted line) strategies in the full model with markers as a function of the
abundance of resources. Proportions do not add up to one because there are
other strategies, including the non-cooperative ones.
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Figure 3 | Dynamic coexistence of the raven, the cooperative dove and the
starling strategies. Numbers of agents using the raven (dashed line), the
cooperative dove (dotted line) and the starling (unbroken line) strategies as
a function of time in one realization of the model.

the agents’ ability to use markers is the switch from the hawk and
bourgeois to the raven strategy (predators recognize and do not
attack in-group members). Once carrying capacity goes beyond C»,
the starling strategy becomes viable. Starlings, however, do not drive
ravens to extinction. Instead, we observe sustained oscillations in the
numbers of starlings, ravens and doves (Fig. 3). As a result, all three
strategies manage to coexist in the long term (Fig. 2).

For low carrying capacity (C < C;), we observed the emergence of
another new strategy, which was to leave the cell whenever any other
agent (related or not) appeared in it. This strategy differs from that of
the doves, who ignore unrelated agents and escape only if attacked. In
fact, it is the exact opposite of the bourgeois and resembles strategies
predicted to evolve at the ‘anti-private-property equilibrium’
(H. Gintis, personal communication). Another interesting behaviour
was observed in starlings, which apparently show the previously
predicted ‘desperado effect’®. If an internal resource of one of
starlings in a cell falls below a certain level, this agent leaves the
cell—apparently preferring to face an almost certain death in a fight
for resources with out-group members, rather than continuing to
deplete a possibly inadequate resource in its native cell.

Our results have important implications for the evolution of
territoriality in animals (and private property in humans). With a
few exceptions®, theorists have paid little attention to the role that
cooperation may have in the evolution of territoriality*®. Our study
suggests that cooperative defence of territory can radically change the

Table 1| List of input variables and their definitions

Input variable* Value

I Bias constant, k

15,13, 14,15 k if there is resource bundle in the field of agent's vision;
0 in the opposite case
le, 17,18, 1o cN., where c is a constant, N is the number of agents in the
given cell of the field of agent'’s vision
10 Value of internal resource, r
I'H Fmax —
I1 S (M — m;)?, where m is a centroid of markers of
7
all agents at the current cell
k- /Z(m’”—m,)z
I3 T where mP is a marker of partner to interact

*Note that /4 is a constant and that I, to /5 are binary variables (k is a functional analogue of
unity and was set equal to r .., Where r,.y is the maximal possible value of stored internal
resource).
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Table 2 | The energetic costs of an agent's actions*

Output vector Action Change of internal resource ri
Op Rest —0.007r max
O Turn left —0.002r ax
0, Turn right —0.002r mayx
05 Consume the resource  +[0.061 max, 0.4r max]®
bundle
O, Move —0.004r 1%
Os Divide —0.004r 1S
Og Fight (randomly chosen The cost of attack is 0.1 r .y the gain

agent in the cell) is +0.2r nay if internal resource of the
victim is r, = 0.2r ., and +r,

otherwise; the victim loses —0.2r 1.«

*Note that r . is the energy storage capacity.

T This scheme of setting parameter values reflects our assumption that the energetic cost of
movement (move, turn left, and so on) is greater than the cost of resting, whereas the cost
of attack is much greater than the cost of movement. Note that energetic losses are
indicated with a minus sign and gains with a plus sign.

1 The energy intake was a parameter in the series of simulations in which food appears in the
cell with the constant probability of 0.01 and the amount of resource in the bundle was
varied between 0.06r ., and 0.4+ 4.

§When the agent divides it spends 0.004r ,.,; half of the remaining energy is then
transferred to the offspring.

course of evolution in resource-rich (C > C,) environments. When
the amount of resource becomes large enough to support more than
one agent, and too large for a single agent to monopolize, solitary
bourgeois are replaced by cooperative starlings, provided that agents
can recognize in-group members. The starling strategy does not take
over completely, however, but coexists with other strategies in a
complex dynamical way (Fig. 3).

One potential strategy that did not evolve in our simulations was
cooperative attack (the ‘wolf’ strategy), probably because agents lacked
the appropriate effectors for travelling in groups in search of prey. In
future work we plan to investigate whether adding such actions as
‘follow another agent’ could allow evolution of cooperative predation.
Another limitation of our study was that agents could transmit traits
(including phenotypic ones) only vertically from parent to offspring.
This means that our ‘in-group members’ were also relatives. But one
of the greatest puzzles about human ultrasociality is how cooperation
between unrelated individuals can arise in the process of evolution.
This issue can be addressed (and we plan to do so) by allowing
cultural transmission of traits between group members.

In conclusion, our study shows that within the artificial evolution
framework it is possible to model not only how one strategy displaces
another (or not), but the very process by which new strategies emerge
out of a very large space of possibilities. Our model did not endow
agents with a set of preconceived strategies—all that we assumed was
that agents have a set of elementary sensory inputs and a set of
actions. The selection of appropriate connections between inputs
and actions was moulded by the process of evolution. It is notable
that the agents in our simulations evolved many of the strategies that
were postulated by previous researchers. Thus, in the absence of
phenotypic markers, three distinct strategies emerged corresponding
to the dove, the hawk and the bourgeois. This shows that our results
are not in opposition to game theory, but represent an extension of
previous approaches. In the presence of markers, the evolution
resulted in some predictable modifications of these basic strategies,
but also in the emergence of a new one. Cooperative doves avoided
competition with in-group members, whereas cooperative hawks—
‘ravens’—avoided attack on phenotypically similar agents. The new
strategy was the starlings, who lived in groups and defended territory
cooperatively against predation.

METHODS

Agents’ behaviour and evolution. Behaviour of agents is governed by a simple
control system in which each output associated with a specific action is
connected to sensory inputs from the environment or the internal state of the
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agent. The control system is linear and functions similarly to a feed-forward
neural network with no hidden layer. To calculate the output vector O of values,
the input vector I is multiplied by a matrix of weights W, which are constrained
to lie in the range [~ Wina0 Winaxl:

0= wijl; ey

At each time step, the agent performs the action associated with the maximum
output value (note that the order in which agents act is randomly shuffled every
step). The input vector I is populated with information about the presence of
resource and other agents in the field of vision (the cell where the agent is, the
neighbour cell in front of the agent, and the cells on the right and left), the level of
internal resource and the euclidean distance between marker vectors of the agent
and its partner for potential interaction. A full list of input variables and their
definitions are given in Table 1. At the start of simulation, an initial population
was formed from the agents with the same matrix of weights W. All the weights in
this matrix were set to zero except for three that defined the following simple
strategy: move if a resource bundle is in the forward cell; eat if a resource is in the
current cell; divide otherwise. Correspondence between outputs and actions,
and how changes of the internal resource r depend on actions, are summarized in
Table 2.

To speed up simulations, all variables were integers. For all simulations, the
size of the world was 900 cells, W, was 1,000, 7., Was 5,000, the dimension of
the marker vector was 10, and its values were bounded by [ — W00 Winax]-

If the agent executes the action ‘divide), its offspring is placed in the same

cell. The genome of the offspring is constructed in the following way: first, for
every weight of the control system, a random value uniformly distributed on
the interval [—0.03W,,,,,,0.03W ,.,] is added; second, for every component of
the marker, a random value uniformly distributed on the interval
[—0.15W nax, 0.15Wpnai] is added. A preliminary version of the model has
been investigated in ref. 29.
Definition of strategies. In our model, every agent has 11 independent inputs
from 13 available (I, is constant and I,; = r., — I,0) and seven actions.
Assuming that we take into consideration only two possible values per input
(this procedure gives us a lower bound on the estimate), the overall number of
strategies can be estimated as 72", which approximately equals 107>, To reduce
such a large space of strategies, we consider only six situations in which the agent
was allowed to interact with an in-group or out-group member for three levels of
internal resource (0.027 4y, 0.57 oy and 0.987 ,,,). We also group ‘rest’, ‘eat” and
‘turn’ actions together because they correspond to the absence of direct
interaction between agents. As a result, the strategy space was reduced to
4° = 4,096 possible strategies. Frequencies of strategies in the population at a
given point in time were calculated by picking every agent and calculating its
actions for every situation.

Our classification of strategies, which evolved in the simulation, was based on
this subset of strategy space. We treated an agent as a ‘raven’ if for any value of its
internal resource it fights an out-group agent but leaves the cell with an in-group
agent. A ‘starling’ was defined as an agent that does not leave the cell in the
presence of in-group individuals and fights out-group agents for any value of
internal resource r = 0.57 .y
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